🎬 Practical Stable Video Diffusion

Real solutions for generating videos from images without expensive hardware

☁️ Cloud Services
📓 Google Colab
🔄 Replicate API
🚀 Gradio Spaces

☁️ Cloud-Based Solutions

Use existing online services that provide SVD without any setup:

🤗 Hugging Face Spaces
Free, browser-based SVD generation using community-hosted models.

✅ Pros

  • Completely free
  • No setup required
  • Works in browser
  • Multiple models available

❌ Cons

  • Queue times
  • Limited customization
  • May have usage limits
Upload your image and adjust settings (motion bucket, fps, etc.)
Wait for generation (usually 1-5 minutes) and download your video
🎨 Stability AI Official
The official Stability AI platform with high-quality results.
Note: Requires account creation and may have usage credits.
Visit Stability AI Platform
🎭 RunwayML
Professional video generation platform with SVD and other AI models.
Plan Cost Credits
Free $0 Limited trial
Standard $15/month 625 credits
Try RunwayML

📓 Google Colab Solution

Free GPU access for running SVD yourself with full control:

🔬 Complete Colab Notebook
Free GPU Access: Google Colab provides free Tesla T4 GPUs that can run SVD!
Create the notebook: Copy this code into a new Google Colab notebook:
# Install dependencies !pip install diffusers transformers accelerate torch torchvision xformers !pip install opencv-python imageio imageio-ffmpeg # Import libraries import torch from diffusers import StableVideoDiffusionPipeline from diffusers.utils import load_image, export_to_video import numpy as np from google.colab import files import os # Setup pipeline print("🚀 Loading Stable Video Diffusion...") pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" ) pipe.enable_model_cpu_offload() print("✅ Pipeline loaded!") # Upload image uploaded = files.upload() image_path = list(uploaded.keys())[0] # Load and process image image = load_image(image_path) image = image.resize((1024, 576)) # Generate video print("🎬 Generating video...") generator = torch.manual_seed(42) frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0] # Save video export_to_video(frames, "generated_video.mp4", fps=7) print("✅ Video generated: generated_video.mp4") # Download video files.download("generated_video.mp4")
Enable GPU: Runtime → Change runtime type → GPU (T4)
Run cells: Execute each cell in order. Total time: ~5-10 minutes
Open Google Colab
Advanced Colab Features
# Advanced settings for better results settings = { 'motion_bucket_id': 127, # 1-255, higher = more motion 'noise_aug_strength': 0.02, # 0-1, higher = more variation 'num_frames': 25, # 14 or 25 frames 'fps': 7, # Output frame rate 'guidance_scale': 1.8 # How closely to follow input } # Generate with custom settings frames = pipe( image, decode_chunk_size=8, generator=generator, motion_bucket_id=settings['motion_bucket_id'], noise_aug_strength=settings['noise_aug_strength'], num_frames=settings['num_frames'], guidance_scale=settings['guidance_scale'] ).frames[0] export_to_video(frames, f"video_{settings['motion_bucket_id']}.mp4", fps=settings['fps'])

🔄 Replicate API

Pay-per-use API service for professional applications:

💳 Replicate Pricing
Model Cost per run Time
SVD (14 frames) ~$0.02 30-60 seconds
SVD-XT (25 frames) ~$0.03 45-90 seconds
Sign up at replicate.com and get API key
Use this JavaScript code in your app:
// Using Replicate API const replicate = new Replicate({ auth: "your-api-token" }); async function generateVideo(imageUrl) { const output = await replicate.run( "stability-ai/stable-video-diffusion:3f0457e4619daac51203dedb1a4919c746077925c5e36494e75a73e2688093a5", { input: { image: imageUrl, fps: 7, motion_bucket_id: 127, noise_aug_strength: 0.02 } } ); return output; }

🚀 Build Your Own Gradio Space

Create a custom SVD interface and host it for free:

🏗️ Custom Gradio Interface
Create this Python file (app.py):
import gradio as gr import torch from diffusers import StableVideoDiffusionPipeline from diffusers.utils import export_to_video import tempfile import os # Load pipeline pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" ) pipe.enable_model_cpu_offload() def generate_video(image, motion_bucket_id, noise_aug_strength, fps): # Resize image image = image.resize((1024, 576)) # Generate video generator = torch.manual_seed(42) frames = pipe( image, decode_chunk_size=8, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength ).frames[0] # Save to temporary file with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp: export_to_video(frames, tmp.name, fps=fps) return tmp.name # Create interface interface = gr.Interface( fn=generate_video, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Slider(1, 255, value=127, label="Motion Intensity"), gr.Slider(0, 1, value=0.02, label="Noise Strength"), gr.Slider(1, 30, value=7, label="FPS") ], outputs=gr.Video(label="Generated Video"), title="🎬 Stable Video Diffusion", description="Transform images into videos using AI" ) if __name__ == "__main__": interface.launch()
Create requirements.txt:
diffusers transformers torch torchvision gradio accelerate xformers
Push to Hugging Face Spaces with GPU enabled (free tier available)
Create New Space

🖼️ Try It Now

Upload an image to get started with any of the methods above:

📁

Drop your image here or click to browse

Supports JPG, PNG, WebP formats

📊 Method Comparison

Method Cost Setup Time Control Level Best For
🤗 HF Spaces Free 0 minutes Basic Quick testing
📓 Google Colab Free 5 minutes Full Learning & experimentation
🔄 Replicate API $0.02-0.03/video 10 minutes Full Production apps
🚀 Custom Gradio Free (HF) / $10-50/month 30 minutes Full Custom applications